RGB-D SLAM Combining Visual Odometry and Extended Information Filter
نویسندگان
چکیده
In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm.
منابع مشابه
IMU and Multiple RGB-D Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning
Autonomous Simultaneous Localization and Mapping (SLAM) is an important topic in many engineering fields. Since stop-and-go systems are typically slow and full-kinematic systems may lack accuracy and integrity, this paper presents a novel hybrid “continuous stop-and-go” mobile mapping system called Scannect. A 3D terrestrial LiDAR system is integrated with a MEMS IMU and two Microsoft Kinect se...
متن کاملOnline 3D Reconstruction and 6-DoF Pose Estimation for RGB-D Sensors
In this paper, we propose an approach to Simultaneous Localization and Mapping (SLAM) for RGB-D sensors. Our system computes 6-DoF pose and sparse feature map of the environment. We propose a novel keyframe selection scheme based on the Fisher information, and new loop closing method that utilizes feature-to-landmark correspondences inspired by image-based localization. As a result, the system ...
متن کاملImproved Omnidirectional Odometry for a View-Based Mapping Approach
This work presents an improved visual odometry using omnidirectional images. The main purpose is to generate a reliable prior input which enhances the SLAM (Simultaneous Localization and Mapping) estimation tasks within the framework of navigation in mobile robotics, in detriment of the internal odometry data. Generally, standard SLAM approaches extensively use data such as the main prior input...
متن کاملCombining Odometry and Visual Loop-Closure Detection for Consistent Topo-Metrical Mapping
We address the problem of simultaneous localization and mapping (SLAM) by combining visual loop-closure detection with metrical information given by a robot odometry. The proposed algorithm extends a purely appearance-based loopclosure detection method based on bags of visual words [1] which is able to detect when the robot has returned back to a previously visited place. An efficient optimizat...
متن کاملValidation of Underwater Sensor Package Using Feature Based SLAM
Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additio...
متن کامل